Mind Alive Blog
Monday, October 15, 2012
Academic Performance & AVE Research Article
A Novel Way of Boosting Grades and Socialization While Reducing Stress in the Typical University Student
A study by Shealy et al (1989) found that blood
serum levels of serotonin, endorphin, and norepinephrine all rose considerably
following 30 minutes of 10 Hz, white-light AVE (Figure 2). This correlates to
being relaxed, but mentally sharp. Increases in endorphins lead to an increased
sense of well-being and increased tolerance to pain (which can be helpful when
experiencing a stiff neck, shoulders and back from sitting and studying for
extended periods of time). AVE reduces daytime levels of melatonin, which
increases alertness.
Photic stimulation also boosts cerebral blood
flow (Fox & Raichle, 1985; Sappy-Marinier et al., 1992). Fox and Raichle showed
that flashing a wide variety of frequencies through the eyes increased CBF
substantially at all frequencies above 4 Hz in the occipital cortex as shown in
Figure 3. The entire brain also showed increased metabolism by 5%.
Pre-tests.
Figure
7. Improvement in Concentration following AVE.
These studies show that audio-visual entrainment
using the DAVIDTM AVE device and patented Omniscreen eyesets
provides a useful tool for boosting concentration, memory and grade-point
average, while simultaneously reducing worry. AVE is easy to use, inexpensive,
and doesn’t require a prescription. The benefits in concentration, memory, and
improved well-being are measureable and educationally significant and may be appreciated
almost immediately. The implementation of the DAVIDTM AVE device in
an educational setting will allow students to achieve better grades with less
stress, while having more time for socializing and enjoying family, friends and
life.
Abstract: Attention,
concentration, memory, grade-point average and stress/worry are all primary
concerns of the modern university and college student. Also, young adults are
concerned about having a somewhat active social life in between exams, essays
and deadlines. The stress of school shunts cerebral blood flow away from the
cortex (during stress the brain assumes the body needs blood in the core to
prepare for flight or battle which is just the opposite of what the present day
student needs). This slows brain wave activity down into greater alpha and
theta brain wave frequencies, similar to what is seen in those with ADD and ADHD,
leaving the student more distractible, impulsive and hyperactive. This behavior
in turn impairs the student’s ability to study and write exams, thus increasing
stress and using valuable social time needed to shake off stress and the potential
of falling into depression. Audio-visual entrainment (AVE) has been shown to
produce dramatic increases in cerebral blood flow, efficient brain activity and
sound mental health. Several studies involving the use of AVE for enhancing
academic performance have been completed. AVE has proven to be an effective and
affordable aid to better grades and improved socialization.
Introduction
All
mental functioning involves an element of cortical (neuronal) arousal, that is,
the alertness of the brain. The degree of the brain’s arousal dramatically
affects how well a particular function can be performed. For instance, it is
almost impossible to pay attention if the brain is producing an excess of alpha
or theta brain waves (Oken & Salinsky, 1992), just as it’s difficult to
fall asleep with a high beta to alpha ratio (alert mind) in an eyes closed
condition.
About
Our Schools
Practically
all of our learning is visual and auditory based. Therefore, learning demands a
great deal of mental processing from the visual and auditory circuits of the
brain. College and university students receive a tremendous amount of
information over short and often unrealistic periods of time. To further the
stresses of learning, a problem of most universities is that the teaching style
is largely semantic, the presentation
of facts and figures without practical application. Being that semantic
learning is not hands-on, nor tied to an event, it is the poorest form of
learning. Remembering what was taught can be very difficult. So one’s mind has
to be sharp.
The
heavy assignment loads, exam schedules and social stresses often cause
psychological instability and anxiety when students try to cope with the pace
of college learning. This shuts down mental functioning, which may lead to burnout
and illness. Many university students experience an increase in the number of
bacterial and viral infections throughout the school year, particularly at exam
times. Many students also develop seasonal affective disorder (Berg &
Siever, 2009) or become deficient in vitamin D, a hormone essential to mental
performance (Welland, 2009).
Get in the Zone
Socialized
mammals, and particularly humans, have two performance zones (Figure 1). There
is one zone requiring higher arousal for simple tasks and the other requiring
lower arousal for complex tasks. So what would be a simple task? Running fast,
climbing a tree, spearing some food, and punching an attacking animal or enemy
in the nose are examples in which we show peak-performance under high arousal.
This high arousal is generally accompanied by excitement and often anxiety. As
the demands of a challenge increases, mental arousal must increase to meet
those demands and this involves the production of norepinephrine (NE), the
brain’s adrenalin (Bremner, 2002). There is a point at which stress gets so
high that there is an over-production of norepinephrine which causes increased anxiety
and distraction (Aston-Jones, 1991). It is important to manage stressors,
assignment timelines, and so on to avoid crisis situations that will spike NE production
and ultimately impede performance. Caffeine has been shown to increase NE which
is why students often do better under the influence of caffeine Robertson
(1978). However, excessive caffeine intake eventually leads to impaired
performance.
Figure 1. Arousal
Curves for Different Types of Function.
Complex tasks,
on the other hand, typically involve challenging the mind on a much grander
level than simple tasks. Paradoxical as it may seem, complex tasks require that
the body/mind be more calm than with simple tasks. Complex tasks involve
calculating a math formula, learning new concepts, and driving a car in busy
traffic, but the most important aspect of calm arousal is connecting as humans
– meaning socialization.
...
Serotonin and
Behavior
Serotonin acts as the brain’s brakes, keeping basic drives and emotions
(such as sex, mood, appetite, sleep, arousal, pain, aggression, and suicide
ideation) in check. Serotonin also boosts happiness and social dominance.
Serotonin levels were shown to be high in salesmen with exceptional sales
performance, averaging 180 ng/ml whole blood serotonin (WBS), whereas the
poorer performers had average WBS levels of 140 ng/ml (Walton, et al., 1992). A
study by Raleigh (Kotulak, 1997) found that when subordinate monkeys were given
a serotonin reuptake inhibitor like Prozac, they became dominant through
friendship and alliances with females, whereas dominant monkeys deficient in
serotonin, ruled with aggression. Females have 20% to 30% more serotonin than
men, which contributes to their reduced impulsiveness and aggression (Kotulak,
1997). College students with the most friends had serotonin levels 20% to 40%
above the norm. People with higher than normal levels of serotonin connect
better socially and have improved ability to perceive the thousands of facial
expressions that really allow them to appreciate others (Harmer, et al., 2003).
Neurotransmitters, Alertness and Efficient Processing
of Information
Once we have perceived an event (e.g., seeing something on the
blackboard), the frontal lobes must engage to interpret the visual information
that our senses have brought to it. The frontal lobes regulate attention,
executive decision making and mood. Cerebral blood flow and the appropriate neurotransmitters
such as serotonin (which maintains calmness) and norepinephrine (which
maintains alertness) must be present frontally to process out sensory
information.
Norepinephrine
(NE) is the neurotransmitter that regulates alertness and mental sharpness. A
good example of this comes from playing a video game. As the level of
difficulty increases so must NE in order to stay in the game. NE increases on
an as-needed basis along with cognitive demand. As stress increases, there is a
point where the stress becomes a “threat” of sorts, causing a plunge in
serotonin and a burst of NE, expressing itself as agitation and aggression.
Students consume plenty of caffeine during the school year and particularly at
exam time. This is because caffeine exerts its effects on the brain by
increasing NE and therefore helping the student to meet the academic challenges
as they increase.
Given that the
school year typically runs through the winter, Seasonal Affective Disorder
(SAD) can impair performance, as melatonin, the neurotransmitter responsible
for producing SAD (Rosenthal,
1993), increases drowsiness and foggy-headedness. Many students
who experience this will consume more caffeine or get more stressed (and thus produce
more NE) from getting behind in their school work.
Figure 2. Changes in Various Neurotransmitters following
a 10 Hz AVE Session.
The Effects of Stress on Memory, and Performance
Stress has
profound effects on academic performance. Stress affects both the way we
retrieve memories and cognitive flexibility. The parts of the body that are
most likely to succumb to the wear and tear effects of stress over time are
those areas which are mobilized during the stress response, including memory (Bremner,
2002).
It has been long
known that there are impairments in memory during a moment of stress. In 2006,
a research team led by Marian Joels at the University of Amsterdam, (Schmidt
& Schwabe, 2011) ran a series of studies which showed that during a
stressful event, cortisol (our primary stress hormone) alters the memory
circuits so that the details of the event
are well remembered, and roughly an hour afterwards, the memories of that event
are consolidated to make sense of what just occurred. This is an important
survival strategy, as having well-established memories of a stressful event (an
event considered dangerous by the brain) was essential for survival throughout
human evolution. Our ancestors would, by and large, have only experienced
stress during serious threats to their lives, and didn’t encounter the stress
of writing exams back then.
In a school
setting, the memories that were formed during the long hours of study are all
but forgotten during an exam if the individual is stressed (our evolutionary
brain would not have evolved for this). Unfortunately, the student often will
remember all of the details surrounding the exam, such as the room, the
facilitator, other students, sounds, and exam questions, but not the information
that was relevant for the test itself until the day after the exam is over.
Semantic
memories involve basic facts and figures (which are prevalent in a college
setting). There are two types of
semantic memories; generic and specific. Generic memories involve shared properties
of whole classes of things. Generic memories are used often, involve several
brain regions, and are retained well under stress (Goldberg, 2005). For
instance, we would know the difference between sandals and runners, even under
stress. But we might not know that the island of Giglio is part of Italy,
because we don’t have a contextual attachment to that island, unless we have a
fascination with cruise-ships, or had a close relationship with someone who almost
died on the Costa-Concordia when it sank this past winter (now rendering a
contextual relationship). Under stress, I might easily remember that operating
a toaster and coffee-maker simultaneously will flip the breaker, but I would
have a much tougher time remembering exceeding an electron flow of 9.36 x 1019
electrons / second will flip the breaker. So under stress, general contextual
semantic memories and skill-based memories, such as using a tool or riding a
bike are barely affected. “Doing” type of actions were much more essential to
survival with our ancestors. Therefore, the brain has learned to preserve these
memories under stress. The best way to recall specific facts and figures is to
be relaxed while writing exams.
Another study at
the University of Trier in Germany (Schmidt & Schwabe, 2011), demonstrated
that students lost mental flexibility and succumbed to simpleminded learning
instead of a more mentally-taxing spatial learning strategy following exposure
to a social stress test. As a result, the students who were not stressed
outperformed the stressed students in solving a spatial challenge.
The Brain Blood-Flow
Connection
During cognitive tasks, the brain’s demand for cerebral blood flow
(CBF) is increased. Vinpocetine, an extract from the periwinkle plant has been
shown to increase CBF (Gold, et. al., 2003). In studies of seniors with memory
problems or dementia-related disease, the use of vinpocetine produced
improvements in attention, concentration and memory.
Everything we see is routed into the occipital lobe where the visual
cortex resides. This is our first line of visual processing. When the task of
seeing is handled well, we can make sense of what we see faster and better and
we can therefore grasp new concepts and jot down notes the faster and better.
Good visual processing for reading, interpreting charts, graphs and
mathematical expressions is fundamental for good academic achievement.
Figure 3. Effect of Photic
Stimulation on Cerebral Blood Flow.
Academic Performance and
the Alpha Brain Wave Rhythm
Several studies have been completed showing the relationship between
peak alpha frequency (PAF) and intelligence. In 1996, Anoukhin and Vogel
observed 101 healthy males ranging from 20 to 45 years of age. They discovered
that those who scored well on the Raven’s IQ tests had a scant 1 Hz faster
alpha rhythm than did the poor performers. In 1971, Eeg Olofsson reported that
healthy human alpha production was in the range of 9.3 to 11.1 Hz. A 1990 study
by Markand showed that a dominant alpha frequency of 8.5 Hz or lower reflected
a state of mental dysfunction. Other studies by various research teams; Vogt,
Klimesh and Doppelmayr (1997), Jausovec (1996), and Giannitrapini (1969) showed
a distinct relationship between mental performance and peak alpha frequency. Peak
alpha frequency at less than 9.5 Hz is associated with poorer than average
academic performance, while dominant alpha production at higher than 10 Hz is
associated with better than average academic performance. Several professors of
neurophysiology have found that their brightest graduate students have a peak-alpha
frequency (PAF) in the range of 10.5 - 10.7 Hz. Those with a PAF above 11 Hz
are mentally sharp, but have a tendency to struggle with anxiety.
Back in 1998, Budzynski and Tang conducted a peak alpha experiment
with AVE. Fifteen minutes of photic stimulation at 14 Hz was given to 14 people.
(Budzynski, et al, 1999). Peak alpha frequency increased following the
cessation of photic stimulation (Figure 4). The pre-stimulation dominant alpha
average frequency was 9.8 Hz, which increased continuously to 10.4 Hz., 20
minutes post stimulation, and continued moving upwards thereafter.
Figure 4. Peak
Alpha Frequency following AVE.
Studies
of Audio-Visual Entrainment In Relation to University,
College and High School Students.
Budzynski Study:
Using AVE to Improve Cognition and Academic Performance in College Students
Tom Budzynski and colleagues (1999) divided the typical alpha band
into three separate bands: A1 represented 7 to 9 Hz; A2 represented 9 to 11 Hz;
and A3 represented 11 to 13 Hz. They examined the A3/A1 ratio. If, for example,
there was 15 mv of A3 activity and 12 mv of A1 activity, the ratio would be 15/12 =
1.25. Based on previous findings, a ratio exceeding 1 was considered to equate
with better than average mental performance and a high PAF, while a score below
1 equated with poorer than average mental performance.
A group of students from Western Washington University (n=8), who
were struggling academically and receiving tutoring, were chosen for the study.
EEGs were collected and the A3/A1 ratios were calculated while the students
were completing a variety of mental tasks. As shown in figure 5, average alpha
slowing (as indicated by the negative ratio) was apparent across all measures and
in particular the Digit Span task. This is an indication of impaired attention and
memory. The Digit Span task requires remembering progressively longer strings
of numbers until they can no longer be remembered. Following 30 sessions of
repeating cycles of 14 and 22 Hz AVE, mean alpha frequency (positive ratio)
increased. The positive alpha ratio continued across all tasks (Eyes-open at Rest,
Eyes-closed at Rest, Digit Symbols, Eyes-open Recall, Eyes-closed Recall)
indicating heightened mental performance (a reversal of the control group) and
improved performance.
Figure 5. AVE at 14 Hz Corrects Slow
Brain Wave Activity during Tasks.
The 30 AVE sessions
were completed in the fall of 1997 and the students’ marks from their spring
exams were recorded and compared against a control group (figure 6). Notice the
AVE group showed improvement in grade-point average (GPA) over the course of
the year while the controls showed a decrease in GPA. This study demonstrates
that the carry-over effect following the cessation of AVE treatment continued for
at least four months.
Figure 6. Improved GPA as Compared with
Controls following 30 Sessions of AVE.
The Wuchrer Study: Memory and
Concentration - 2009
This study, by Viktor Wuchrer (2009), examined the
memory and concentration ability of 78 students from the Psychological
Institute of the Friedrich-Alexander University Erlangen-Nürnberg. The selected
students were randomly assigned to one of three groups: an Alpha AVE group; a
Beta/SMR AVE Group; and a Control Group. The students in the Beta/SMR AVE Group
were given one AVE session using the Mind Alive Inc., patented dual-frequency
eyesets, which stimulate a beta frequency into the left hemisphere of the brain
and an SMR frequency into the right hemisphere of the brain. This combination has
been shown to boost attention (Siever, 1998; 2004; 2007). The Alpha AVE Group
received one AVE session at a randomized alpha frequency of roughly 10 Hz.
Pre-tests.
At the beginning of the experiment
each participant was subjected to a Pre-Test in order to measure his/her memory
and concentration-performance. To measure memory performance, the sub-test
objects from the Baeumler Memory Test (1974) had been administered to each
participant. Also, each participant had to undergo the Brickenkamp d2
Concentration Test (2002) in order to evaluate his concentration-performance.
Treatment.
Following the Pre-Test, each
participant was randomly assigned to the respective Treatment:
The participants in the Alpha group
received 20 minutes of AVE with a stimulation frequency of 10 Hz (“Healthy
Alpha” session) from a DAVIDTM AVE device.
The participants in the Beta/SMR
group received 20 minutes AVE with dual frequency stimulation to the brain (Brain
Brightener Protocol). The left brain-hemisphere was stimulated with a pulse
rate of 18 to 20 Hz and the right brain-hemisphere was stimulated with a pulse
rate of 13 to 14 Hz.
The participants in the control group
received no stimulation. Instead they read a relaxing prose text for a fantasy
journey and wrote a short essay afterwards, which represented the placebo
treatment.
The experimental hypothesis was
that the higher stimulation frequency within the Beta range for the left brain hemisphere
would cause a corresponding activation of logical-analytic thinking. The Brain
Brightener protocol in theory should accordingly produce better concentration-performance
for the Beta/SMR group of students as compared with the Alpha Group. Similarly,
the investigators hypothesized that the Alpha Group would produce the best
improvements in memory. The participants of the control group received no
stimulation. Instead, they read a relaxing prose text for a fantasy journey and
write a short essay afterwards, which represented the placebo treatment.
Figures 7 and 8, show the results comparing
each experimental group to the placebo control group. The charts clearly
indicate that the DAVID AVE device produced exceptional results for both
concentration and memory. Surprisingly, the controls actually performed worse
on the post trial, whereas the AVE groups excelled. The poor performance of the
controls might be attributed to mental fatigue from the testing, whereas the
AVE group had sustained endurance.
As hypothesized, the Beta/SMR brain
wave frequencies produced better results for concentration and the alpha
frequency produced better results for memory. There were immediate improvements
in academic ability following the use of the DAVID AVE for both experimental
groups.
Figure 8. Improvement in Memory following AVE.
The Wolitzky-Taylor Study - Worry and Academic
Performance
Stress
causes a shunting of cerebral blood flow away from the brain and into the body
as the brain prepares for fight or flight (Everly & Lating, 2002). This, in
turn, increases impulsiveness, impairs flexible thinking and hampers the
retrieval of memories during critical times, such as exams. So being able to avoid
worry is essential for good academic grades as well as overall health, a happy
disposition and increased socialization.
A
Texas-based study by Wolitzky, et al., (2010) found that AVE from the DAVID AVE
devices was more effective in reducing worry than traditional psychological
worry-reduction techniques. Wolitzky used the patented Mind Alive
Inc., dual-frequency eyesets, which stimulated a beta frequency into the left
hemisphere of the brain and an alpha frequency in to the right hemisphere of
the brain. This has been reported to reduce anxiety and depression (Siever, 1998;
2004; 2007). The
study was four weeks in duration and the students received their respective
therapy three times per week. Figure 9 shows that compared to a Waiting List Control
group, a Worry Exposure Therapy group and an Expressive Writing group, AVE was
the most effective technique for reducing worry.
Figure
9. Worry Reductions following Various Treatments
...
Conclusion
References
Anoukhin, A. & Vogel, F. (1966). EEG
alpha rhythm frequency and intelligence in normal individuals. Intelligence,
23, 1-14.
Aston-Jones, G., Chiang, C., Alexinsky, T.,
(1991). Discharge of noradrenic locus coeruleus neurons in behaving rats and
monkeys suggests a role in vigilance. In C.D. Barnes & O. Pomeiano (Eds.),
Progress in brain research (pp. 501-519). New York: Elsevier Science
Publishers.
Bäumler, G. (1974). Lern- und Gedächtnistest: LGT-3. [Learning and memory testing].
Göttingen, Germany: Hogrefe.
Berg, K. &
Siever, D. (2009) A controlled comparison of audio-visual entrainment for treating
seasonal affective disorder (SAD). Journal
of Neurotherapy, 13 (3), 166-175.
Bremner, D. (2002). Does stress damage the brain? W. W. Norton & Company, New York.
Brickenkamp, R. (2002). Test d2.
Aufmerksamkeits-Belastungstest. Handanweisung (9th edition).
[Concentration-endurance test. Manual] Göttingen, Germany: Hogrefe.
Budzynski, T. & Tang, J. (1998). Bio-light
effects on the electroencephalogram (EEG). SynchroMed Report. Seattle,
WA.
Budzynski, T., Jordy, J., Budzynski, H.,
Tang, H., & Claypoole, H. (1999). Academic performance enhancement with
photic stimulation and electrodermal (EDR) feedback. Journal of Neurotherapy, 3 (3), 11-21.
Eeg Olofsson, O., Petersen, I., Sellden. U.
(1971). The development of the electroencephalogram in normal children from the
age of one through 15 years.Paroxysmal activity. Neuropediatric, 2, 375-403.
Ekman, P. (2007). Emotions revealed (-2nd edition). New York, NY: Henry
Holt and Company.
Ekman, P. (2009). Lie catching and micro expressions.
In C. Martin (Ed), The philosophy of deception,
pp. 118-137. New York, NY: Oxford University Press.
Everly, G. S., & Lating, J. M. (2002). A
clinical guide to treatment of the human stress response. New York, NY:
Kluwer Academic/Plenum.
Fox, P. & Raichle, M.
(1985). Stimulus rate determines regional blood flow in striate cortex. Annals of Neurology, 17, (3), 303-305.
Giannitrapani, D. (1969). EEG average
frequency and intelligence. Electroencephalography & Clinical
Neurophysiology, 27, 480-486.
Gold, P., Cahill, L., & Wenk, G. (2003,
April). The lowdown on ginko biloba. Scientific American, 86-91.
Goldberg, E., (2005). The wisdom paradox. Gotham Books, New York, NY: Gotham Books.
Harmer, C., Bhagwagar, Z., Perrett, D.,
Vollm, B., Cowen, P., & Goodwin, G. (2003). Acute SSRI administration
affects the processing of social cues in healthy volunteers. Neuropsychopharmacology,
28, 148-152.
Jausovec, N. (1996). Differences in EEG
alpha activity related to giftness. Intelligence, 23, 159-173.
Klimesh, W., Doppelmayr, M., Pachinger
& Ripper, B. (1997). Brain oscillations and human memory: EEG correlates in
the upper alpha and theta band. Neuroscience Letters, 238, 9-12.
Kotulak, R. (1997). Inside the brain:
Revolutionary discoveries of how the mind works. Kansas, Missouri: Andrews
McMeel Publishing Co.
Markand, O. (1990). Alpha rhythms. Journal
of Clinical Neurophysiology, 7,
163-189.
Navarro, J. (2008). What every body is saying. Harper-Collins Publishers, NY.
Oken, B., & Salinsky, M. (1992).
Alertness and attention: Basic science and electrophysiologic correlates. Journal
of Clinical Neurophysiology, 9
(4), 480-494.
Rosenthal, N. E. (1993). Winter blues: What it is and how to
overcome it. New York: Guildford Press.
Sappey-Marinier, D.,
Calabrese, G., Fein, G., Hugg, J., Biggins, C., & Weiner, M. (1992). Effect
of photic stimulation on human visual cortex lactate and phosphates using 1H
and 31P magnetic resonance spectroscopy.
Journal of Cerebral Blood Flow and
Metabolism, 12 (4), 584-592.
Schmidt &
Schwabe, (2011). Splintered by stress. Scientific
American Mind, 22 (4), 22-29.
Shealy, N., Cady, R., Cox, R., Liss, S., Clossen, W., Veehoff, D. (1989). A comparison of depths of relaxation produced
by various techniques and neurotransmitters produced by brainwave entrainment. Shealy and Forest Institute of Professional
Psychology. A study done for Comprehensive Health
Care, Unpublished.
Siever, D. (1998).
Independent field stimulator. USA patent # 5,709,645.
Siever, D. (2003).
Audio-visual entrainment: I. History and physiological mechanisms. Biofeedback.
31, 2, 21-27. www.mindalive.com/1_0/article%201.pdf.
Siever, D. (2004).
Stimulation of the central nervous system, CIPO patent # 2,491,085.
Siever, D. (2007). Audio-visual entrainment: History,
physiology, and clinical studies. In J.R.Evans (Eds.). Handbook of neurofeedback:
Dynamics and clinical applications (pp. 155-183). New York, NY: The Hayworth
Medical Press.
Toomim, H. &
Toomim, M. (1999). Clinical observations with brain blood flow biofeedback. The
Thinking Cap™. Journal of Neurotherapy, 3 (4), 73.
Vogt, F., Klimesh, W., &
Doppelmayr, M. (1998). High-frequency components in the alpha band and memory
performance. Journal of Clinical Neurophysiology, 15, 167-172.
Walton, K., Gelderloos, N., Goddard, P., Gaudet, D.
(1992, September). Signs of increased serotonin metabolism are associated with
superior job performance and leadership ability. Proceedings of the Second
International Symposium on Serotonin, Houston, Texas.
Welland, D. (2009). Does D
make a difference? New studies show low vitamin D levels may impair cognitive
function. Scientific American Mind, 20
(5), 14.
Wolitzky-Taylor, K &
Telch, M. (2010). Efficacy of self-administered treatments for pathological
academic worry: A randomized controlled trial. Behaviour Research and Therapy, 48, 840-850.
Wuchrer, V. (2009). Study on
memory and concentration – Conducted at the Psychological Institute of the Friedrich-Alexander
University Erlangen-Nürnberg. Unpublished. Available from Mind Alive Inc.
Labels: academic performance, AVE, College, concentration, Grade Point Average, memory, relaxation, research, socializing, stress, students, study, university, worry reduction
Comments:
The luxury car market was valued at around USD 441 billion in 2021. The market is projected to reach USD 600 billion in 2027, with a CAGR of approximately 5.1% during the forecast period (2022-2027). The COVID-19 pandemic had a significant impact on the luxury car market in the short term as the sales and production witnessed a decline in 2020. Furthermore, the pandemic affected the spending power of every individual. However, after the restrictions were lifted, the market has been gradually gaining its lost momentum. A significant growth of tangible luxury offerings in vehicles, shifting consumer preferences from sedans to SUVs, and increasing disposable incomes of consumers have been propelling the demand for luxury cars worldwide. However, an increase in import tariffs is expected to hinder the growth of the Luxury Car Market. For instance, the US President-elect is expected to increase the import tariffs on German luxury cars. BMW and other German luxury car manufacturers may face a 35% import duty for cars not built in the United States.
There are some more reports to check : Asia Pacific Vaccine Market, Micro Inverter Market, Albumin Market, Middle East and Africa Cybersecurity Market,Wi-Fi as a Service Market, Learning Management System Market, States Flooring Market, Sports and Energy Drinks Market, Brazil Healthcare, Sterilisation Services Market, Media Monitoring Tools Market
This is an awesome motivating article. I am practically satisfied with your great work. Keep it up! Continue blogging Hoping to peruse your next post. Many thanks for sharing. mouau postgraduate admission form out
<< Home
Thanks for sharing this informative content.,
Leanpitch provides online training in Agile team facilitation during this lockdown period everyone can use it wisely.
Agile team facilitation
ICP ATF
Team facilitator Agile
Agile facilitator
Team facilitator in Agile
ICAGILE ATF
Leanpitch provides online training in Agile team facilitation during this lockdown period everyone can use it wisely.
Agile team facilitation
ICP ATF
Team facilitator Agile
Agile facilitator
Team facilitator in Agile
ICAGILE ATF
Thanks for sharing this.,
Leanpitch provides online training in CSPO during this lockdown period everyone can use it wisely.
CSPO certification Bangalore
CSPO Bangalore
Leanpitch provides online training in CSPO during this lockdown period everyone can use it wisely.
CSPO certification Bangalore
CSPO Bangalore
Thanks for sharing this.,
Leanpitch provides online training in CSPO during this lockdown period everyone can use it wisely.
CSPO training Bangalore
Product owner certification Bangalore
Leanpitch provides online training in CSPO during this lockdown period everyone can use it wisely.
CSPO training Bangalore
Product owner certification Bangalore
Thanks for sharing this.,
Leanpitch provides online training in Scrum Master, everyone can use it wisely.
Join Leanpitch 2 Days CSM Certification Workshop in different cities.
Scrum master certification
csm certification
Leanpitch provides online training in Scrum Master, everyone can use it wisely.
Join Leanpitch 2 Days CSM Certification Workshop in different cities.
Scrum master certification
csm certification
Thanks for sharing this.,
Leanpitch provides online training in Scrum Master, everyone can use it wisely.
Join Leanpitch 2 Days CSM Certification Workshop in different cities.
csm training
Scrum master Training
Leanpitch provides online training in Scrum Master, everyone can use it wisely.
Join Leanpitch 2 Days CSM Certification Workshop in different cities.
csm training
Scrum master Training
Thanks for sharing this.,
Leanpitch provides online training in Scrum Master, everyone can use it wisely.
Join Leanpitch 2 Days CSM Certification Workshop in different cities.
certified scrum master certification
agile scrum master certification
Leanpitch provides online training in Scrum Master, everyone can use it wisely.
Join Leanpitch 2 Days CSM Certification Workshop in different cities.
certified scrum master certification
agile scrum master certification
I've been troubled for several days with this topic. 슬롯사이트, But by chance looking at your post solved my problem! I will leave my blog, so when would you like to visit it?
Introduction to books at an early age develops a child-friendly and learning tendency in children. By the time they reach university age, it becomes so strong that students' knowledge has become much more extensive and mature. Cheap Dissertation Writing Service
Quality of assignments is the most significant aspect that students look for any academic service. College Assignment Help offer superior quality services for students belonging to different academic levels. The website also mentions about following strict quality control measures for the tasks delegated to them by the students.
Sign up for a new member, Superslot, free credit, 50, confirm your number, a new choice, do it for free. pg slot
The luxury car market was valued at around USD 441 billion in 2021. The market is projected to reach USD 600 billion in 2027, with a CAGR of approximately 5.1% during the forecast period (2022-2027). The COVID-19 pandemic had a significant impact on the luxury car market in the short term as the sales and production witnessed a decline in 2020. Furthermore, the pandemic affected the spending power of every individual. However, after the restrictions were lifted, the market has been gradually gaining its lost momentum. A significant growth of tangible luxury offerings in vehicles, shifting consumer preferences from sedans to SUVs, and increasing disposable incomes of consumers have been propelling the demand for luxury cars worldwide. However, an increase in import tariffs is expected to hinder the growth of the Luxury Car Market. For instance, the US President-elect is expected to increase the import tariffs on German luxury cars. BMW and other German luxury car manufacturers may face a 35% import duty for cars not built in the United States.
There are some more reports to check : Asia Pacific Vaccine Market, Micro Inverter Market, Albumin Market, Middle East and Africa Cybersecurity Market,Wi-Fi as a Service Market, Learning Management System Market, States Flooring Market, Sports and Energy Drinks Market, Brazil Healthcare, Sterilisation Services Market, Media Monitoring Tools Market
Such a great article. I am very happy to read this article.This behavior in turn impairs the student’s ability to study and write exams. Thanks for sharing this article. Now it's time to avail HALFCASTE CREAM SET for more information.
I appreciate you because you highlight very rare topic on internet. The implementation of the DAVIDTM AVE device in an educational setting will allow students to achieve better grades. Now its time to avail solar panels for homefor more details.
Nice way to explain the topic. Solar is an increasing product to give benefits. This post highlights a lot. Now its time to get toughened glass shopfronts for more information.
This is an awesome motivating article. I am practically satisfied with your great work. Keep it up! Continue blogging Hoping to peruse your next post. Many thanks for sharing. mouau postgraduate admission form out
This research article investigates the correlation between students' academic performance and their engagement with Affective Virtual Environments (AVE). Through a comprehensive analysis of data collected from a diverse student population, the study identifies a positive association between active participation in AVE and improved academic outcomes. The findings suggest that AVE's immersive and emotionally responsive nature contributes to enhanced learning experiences, thereby offering valuable insights for educational practitioners aiming to optimize digital learning environments. is reckless driving a criminal offense in virginia
The article provides valuable insights into the relationship between academic performance, stress reduction, and brain functionality. It's essential to recognize the role of stress in memory and the potential benefits of AVE in enhancing learning. Great information!
Reckless Driving New Jersey
Reckless Driving New Jersey
Subscribe to Post Comments [Atom]
<< Home
Post a Comment